OP&PM SURVEYS ON APPLIED AND INDUSTRIAL Volume 25 MATHEMATICS Issue 1 2018

III INTERNATIONAL BALTIC SYMPOSIUM ON APPLIED AND INDUSTRIAL MATHEMATICS

V.I.Pagurova, N.S.Chizhikova (Moscow, Lomonosov MSU). On the joint limiting distribution of central and intermediate order statistics.

We consider the joint asymptotic distribution of central and intermediate order statistics when a sample size tends to infinity.

Let X_1, \ldots, X_n be mutually independent random variables with the common distribution function F(x), f(x) = F'(x), the set of order statistics is $X_1^{(n)} \leq \cdots \leq X_n^{(n)}$. Let $0 < t_1 < \cdots < t_m, t_{m+2} > \cdots > t_{m+l+1} > 0$, $0 < \alpha < 1$, 0 , <math>[x] denotes the integer part of $x, n_i = [t_i n^{\alpha}], i = 1, \ldots, m, n_{m+1} = [np] + 1$, $F(\zeta) = p, n_j = [n - t_j n^{\alpha} + 1], j = m + 2, \ldots, m + l + 1$. Define

$$\lambda_{k,n} = k/n, \quad k = k(n) \to \infty, \quad \lambda_{k,n} \to 0, \text{ as } n \to \infty.$$
 (1)

Necessary and sufficient conditions under which the statistic $T_n = (X_k^{(n)} - d_n)/c_n$ has a Gaussian distribution, as $n \to \infty$, for some $c_n > 0$ and d_n were shown in [1, 2]. If the condition (1) is satisfied then the the Gaussian and log-Gaussian distributions are possible limiting distributions [3, 4]. The joint asymptotic distribution, as $n \to \infty$, for central order statistics of a rank $[n\lambda_i] + 1$, $i = 1, \ldots, m, 0 < \lambda_1 < \cdots < \lambda_m < 1$, was given in [5]. The joint asymptotic distribution of intermediate order statistics when random variables X_1, \ldots, X_n satisfy some conditions of dependence was shown in [6]. The asymptotic limit distribution of intermediate order statistics based on the sample with a random size was considered in [7].

We introduce variables $d_{n,i}$ and $b_{n,j}$ satisfying the following equations

$$F(d_{n,i}) = t_i/n^{1-\alpha}, \quad i = 1, \dots, m, \quad F(b_{n,j}) = 1 - t_j/n^{1-\alpha}, \quad j = m+2, \dots, m+l+1.$$

Theorem. Let f(x) be a differentiable in the neighborhood of $d_{n,i}$, ζ , $b_{n,j}$, $f(d_{n,i}) \neq 0$, $i = 1, \ldots, m$, $f(b_{n,j}) \neq 0$, $j = m + 2, \ldots, m + l + 1$, and $\lim_{n\to\infty} n^{1-\alpha/2} f(d_{n,1}) \neq 0$, $\lim_{n\to\infty} n^{1-\alpha/2} f(b_{n,m+2}) \neq 0$. Then for every ζ , $f(\zeta) \neq 0$, the joint distribution of random variables

$$X_{n_1}^{(n)} - d_{n,1}, \dots, X_{n_m}^{(n)} - d_{n,m}, X_{n_{m+1}}^{(n)} - \zeta,$$

$$X_{n_{m+2}}^{(n)} - b_{n,m+2}, \dots, X_{n_{m+l+1}}^{(n)} - b_{n,m+l+1}, \quad (2)$$

as $n \to \infty$, converges to (m+l+1)-variate Gaussian distribution with expectations equal

[©] Редакция журнала «ОПиПМ», 2018 г.

zero and covariances in the following asymptotic presentations

$$\begin{aligned} & \cos\left(X_{n_{i}}^{(n)}, X_{n_{j}}^{(n)}\right) = t_{i}/(n^{2-\alpha}f(d_{n,i})f(d_{n,j})) \quad i, j = 1, \dots, m, \, i \leq j, \\ & \cos\left(X_{n_{i}}^{(n)}, X_{n_{j}}^{(n)}\right) = t_{i}/(n^{2-\alpha}f(b_{n,i})f(b_{n,j})) \quad i, j = m+2, \dots, m+l+1, \, j \leq i, \\ & \cos\left(X_{n_{i}}^{(n)}, X_{n_{m+1}}^{(n)}\right) = t_{i}(1-p)/(n^{2-\alpha}f(d_{n,i})f(\zeta)), \quad i = 1, \dots, m, \\ & \cos\left(X_{n_{j}}^{(n)}, X_{n_{m+1}}^{(n)}\right) = t_{j}p/(n^{2-\alpha}f(b_{n,j})f(\zeta)), \quad j = m+2, \dots, m+l+1, \\ & \cos\left(X_{n_{i}}^{(n)}, X_{n_{j}}^{(n)}\right) = t_{i}t_{j}/(n^{3-2\alpha}f(d_{n,i})f(b_{n,j})), \quad i = 1, \dots, m, \, j = m+2, \dots, m+l+1, \\ & \mathbf{D}X_{n_{m+1}}^{(n)} = p(1-p)/(nf^{2}(\zeta)). \end{aligned}$$

If covariances tend to zero then random variables (2) are independent asymptotically.

СПИСОК ЛИТЕРАТУРЫ

- Smirnov N. V. Limit distributions for order statistics. M.: Proc. of Steklov' MIAS, 1949, v. 25, c. 5–559.
- Smirnov N. V. On the convergence to a Gaussian law for distributions of order statistics. — Bull. Uzbek. USSR Acad. Sci., 1966, v. 3, c. 24–32.
- Chibisov D. M. On limit distributions for order statistics. Theory Probab. Appl., 1964, v. 3, № 1, c. 159–163.
- 4. Wu C. The types of limit distributions for some terms of variational series. Sci. Sinica, 1966, v. 15, c. 749–762.
- Mosteller F. On some useful "inefficient" statistics. Ann. Math. Statist., 1946, v. 17, c. 377–408.
- Watts V., Rootsen H., Leadbetter M. On limiting distributions of intermediate order statistics from stationary sequences. — Ann. Probab., 1982, v. 10, c. 653–662.
- 7. Pagurova V. I. On the limiting distribution for order statistics based on the sample with a random size. Vestnik MGU, ser. 15, 2016, № 4, c. 16–18.