OP&PM SURVEYS ON APPLIED AND INDUSTRIAL Volume 25 MATHEMATICS Issue 1

2018

III INTERNATIONAL BALTIC SYMPOSIUM **O**N APPLIED AND INDUSTRIAL MATHEMATICS

S. S. Orlov, G. K. Sokolova (Irkutsk, ISU). Periodic functions of several real variables.

In this note we are concerned with theorems to the real valued periodic functions of n real arguments defined on all of \mathbb{R}^n . A function $f:\mathbb{R}^n\to\mathbb{R}$ is called periodic with period \overline{T} if there exists a vector $\overline{T} \neq \overline{0}$ such that $f(\overline{r} + \overline{T}) = f(\overline{r})$ for all $\overline{r} \in \mathbb{R}^n$. This concept is used in the mathematical modeling of self-similar objects and their properties, and of different repetitive processes in time and space. For example, it arises in the study of the band structure of solid state [1]. The wave function ψ satisfies the Born-Karman conditions $\psi(\overline{r} + N_i \overline{a}_i) = \psi(\overline{r}), \ i = 1, \dots, d$, where d is dimension of Bravais lattice, \overline{a}_i are its primitive vectors, N_i are integers. We study the relationship between the periodicity of a multivariate function in the sense of the above definition and its periodicity with respect to individual variables.

Definition 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a periodic function with period \overline{T} . If there exists a period \overline{T}_0 of the least magnitude and direction of the vector \overline{T} , then it is called a basic period of function f along a given unit vector $\overline{\mathcal{T}}$, where $\overline{T} = |\overline{T}| \cdot \overline{\mathcal{T}}$.

Now suppose the set of a straight lines $\ell_{\overline{T}}(\overline{a})$ in \mathbb{R}^n parallel to the vector \overline{T} , where \overline{a} is a radius vector of certain point of $\ell_{\overline{T}}(\overline{a})$. Let us choose this point such that $\langle \overline{a}, \overline{T} \rangle = 0$, then the correspondence $\overline{a} \to \ell_{\overline{T}}(\overline{a})$ is one-to-one. Restriction of the function $f: \mathbb{R}^n \to \mathbb{R}$ to any one of the considered straight lines is given by

$$f(\overline{r})\big|_{\overline{r}\in\ell_{\overline{T}}(\overline{a})} = f(\overline{a} + t\overline{\overline{T}}),\tag{1}$$

it is a function of one variable $t \in \mathbb{R}$.

Theorem 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a periodic function with period \overline{T} . If at least one of the restrictions of function f to the straight lines $\ell_{\overline{T}}(\overline{a})$ is continuous and nonconstant, then there exists basic period of f along a given unit vector $\overline{\mathcal{T}}$.

Theorem 2. If $f : \mathbb{R}^n \to \mathbb{R}$ is periodic function with basic period \overline{T}_0 along a given unit vector $\overline{\mathcal{T}}$, then any its period \overline{T} parallel to the vector $\overline{\mathcal{T}}$ is $\overline{T} = k \cdot \overline{T}_0$, where $k \in \mathbb{Z} \setminus \{0\}.$

Theorem 3. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is periodic function with basic period \overline{T}_0 along a given unit vector $\overline{\mathcal{T}}$, and $\mathcal{A} : \mathbb{R}^n \to \mathbb{R}^n$ is nonsingular linear operator. Then the function composition $f \circ \mathcal{A} : \mathbb{R}^n \to \mathbb{R}$ is periodic with basic period $\mathcal{A}^{-1}\overline{T}_0$ along a respective unit vector $\overline{\tau}$, where $\mathcal{A}^{-1}\overline{T}_0 = |\mathcal{A}^{-1}\overline{T}_0| \cdot \overline{\tau}$.

Proof. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a periodic function with basic period \overline{T}_0 ; then it follows from the equalities $f(\mathcal{A}(\overline{r} + \mathcal{A}^{-1}\overline{T}_0)) = f(\mathcal{A}\overline{r} + \overline{T}_0) = f(\mathcal{A}\overline{r})$ for all $\overline{r} \in \mathbb{R}^n$ that the vector $\mathcal{A}^{-1}\overline{T}_0$ is a period of function composition $f \circ \mathcal{A} : \mathbb{R}^n \to \mathbb{R}$. Let us suppose that $\mathcal{A}^{-1}\overline{T}_0$ is not basic period of this function along a given unit vector $\overline{\tau}$, then there exists another period \overline{T} of the least magnitude and parallel to the vector $\overline{\tau}$, i. e. $\overline{T} = \lambda \mathcal{A}^{-1} \overline{T}_0$, where $0 < \lambda < 1$, and $f(\mathcal{A}(\overline{r} + \overline{T})) = f(\mathcal{A}\overline{r})$. On the other hand, the vector $\mathcal{A}\overline{T} = \lambda \overline{T}_0$

[©] Редакция журнала «ОПиПМ», 2018 г.

is a period of function f, and $|\mathcal{A}\overline{T}| < |\overline{T}_0|$. This fact contradicts our previous assumption that \overline{T}_0 is basic period of function f along a given unit vector \overline{T} .

Remark 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a periodic function, the vector \overline{T}_0 is its basic period along a given unit vector $\overline{\mathcal{T}}$, and $\mathcal{A} : \mathbb{R}^n \to \mathbb{R}^n$ is nonsingular linear operator. If the components of the vector $\overline{\mathcal{T}}$ are elements of the *i*-th column of the matrix \mathcal{A} of linear operator \mathcal{A} , then the function composition $f \circ \mathcal{A} : \mathbb{R}^n \to \mathbb{R}$ is a periodic with basic period $|\overline{T}_0|\overline{e}_i|$ along a given unit vector \overline{e}_i . In other words, this function is a periodic with respect to variable x_i , and number $|\overline{T}_0|$ is its basic period. Here and everywhere below $\{\overline{e}_i\}_{i=1}^n$ is a natural Hamel basis in \mathbb{R}^n .

Remark 2. It is possible for a *m*-dimensional lattice [3, p. 11] to be a set of periods of a periodic function $f: \mathbb{R}^n \to \mathbb{R}$. A set of all possible non-trivial linear combinations of *m* linearly independent *n*-dimensional vectors $\overline{T}_1, \overline{T}_2, \ldots, \overline{T}_m$ with integers as coefficients is called *m*-dimensional lattice. The vectors $\overline{T}_1, \overline{T}_2, \ldots, \overline{T}_m$ are called a primitive vectors of the lattice, they are necessarily basic periods of function f in respective directions. By choosing the matrix A of linear operator A it is possible for function $f: \mathbb{R}^n \to \mathbb{R}$ to be a periodic with respect to any *m* variables with periods $|\overline{T}_1|, |\overline{T}_2|, \ldots, |\overline{T}_m|$ respectively.

If the restriction of the function $f : \mathbb{R}^n \to \mathbb{R}$ to any straight line $\ell_{\overline{T}}(\overline{a})$ is constant, then this function is called a constant along a given unit vector $\overline{\overline{T}}$. It means that for any fixed vector \overline{a} the function (1) does not depend in variable t.

Theorem 4. If $f : \mathbb{R}^n \to \mathbb{R}$ is constant along a given unit vector $\overline{\mathcal{T}}$, then it is periodic function with period $\alpha \overline{\mathcal{T}}$, where $\alpha \in \mathbb{R} \setminus \{0\}$.

Remark 3. If the function $f : \mathbb{R}^n \to \mathbb{R}$ is constant along all linearly independent given unit vectors $\overline{\mathcal{T}}_1, \overline{\mathcal{T}}_2, \ldots, \overline{\mathcal{T}}_k$, then the linear span of the vectors $\overline{\mathcal{T}}_1, \overline{\mathcal{T}}_2, \ldots, \overline{\mathcal{T}}_k$ is a set of periods of this function. Here $k \leq n$, in the case of k = n the function f is identically constant.

Remark 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a constant function along a given unit vector $\overline{\mathcal{T}}$. If the components of the vector $\overline{\mathcal{T}}$ are elements of the *i*th column of the matrix A of linear operator \mathcal{A} , then the function composition $f \circ \mathcal{A} : \mathbb{R}^n \to \mathbb{R}$ is constant with respect to variable x_i , i.e. this function does not depend in variable x_i .

Remark 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a constant function along all linearly independent given unit vectors $\overline{\mathcal{T}}_1, \overline{\mathcal{T}}_2, \ldots, \overline{\mathcal{T}}_k$, where $k \leq n$. By choosing the matrix A of linear operator \mathcal{A} it is possible for function $f \circ \mathcal{A} : \mathbb{R}^n \to \mathbb{R}$ to be a constant with respect to chosen of k variables.

Without loss of generality it can be assumed that any function $f : \mathbb{R}^n \to \mathbb{R}$ is a periodic with respect to m variables, it is constant with respect to other k variables, and it is non-periodic with respect to n - m - k remaining variables.

REFERENCES

- Ashcroft N. W., Mermin N. D. Solid State Physics. Philadelphia: Saunders College Publ., 1976, 826 p.
- Skriganov M. M. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators. — Proc. Steklov Math. Inst., 1987, v. 171, p. 1–121.