Е. Г. Гольштейн (Москва, ЦЭМИ РАН). Численный метод решения одной задачи равновесия.

Пусть **E** — евклидово пространство, G — непустой выпуклый компакт, содержащийся в **E**, $\Phi(u,w)$ ($(u,v)\in G\times G$) — функция с вещественными значениями. Рассматривается задача $P(\Phi,G)$ определения такой точки $u^*\in G$, что $\Phi(u^*,u^*)=\max_{u\in G}\Phi(u,u^*)$. Если Φ непрерывна на $G\times G$ и вогнута по $u\in G$ при любом фиксированном $w\in G$, то задача $P(\Phi,G)$ разрешима. Численный метод решения задачи $P(\Phi,G)$ выглядит следующим образом. Фиксируется произвольное число $\varepsilon>0$. Перед началом любой итерации k предполагается, что уже найдены точки $u_i\in G$ и векторы $l_i\in\partial_u\Phi(u_i,u_i), 1\leqslant i\leqslant k$ (в качестве u_1 можно использовать произвольную точку G), и определена задача

$$A_k: \quad \tau \to \max, \quad \langle l_i, u - u_i \rangle \geqslant \tau, \qquad 1 \leqslant i \leqslant k, \quad u \in G.$$

Итерация k начинается с вычисления Δ_k , равного максимальному значению переменной τ задачи \mathcal{A}_k , и определения множителей Лагранжа $\mu_i, \ 1\leqslant i\leqslant k$, этой задачи. Если $\Delta_k\leqslant \varepsilon$, то итерация k является последней, а в качестве приближенного решения задачи $P(\Phi,G)$ принимается точка $u_k^*=\sum_{i=1}^k \mu_i u_i\in G$. В противном случае множество точек $\{u_1,\ldots,u_k\}$ пополняется новой точкой u_{k+1} — решением задачи

$$||u - u_k||^2 \to \min, \quad u \in M_k(\Delta_k/\sqrt{2}),$$

где $M_k(\tau)\subset G$ есть множество, определяемое ограничениями задачи $\mathcal{P}(\Phi,G)$ при фиксированном значении $\tau\leqslant\Delta_k$. Под ε -решением задачи $P(\Phi,G)$ при любом $\varepsilon\geqslant 0$ условимся понимать такую точку $u_\varepsilon\in G$, для которой справедливо неравенство

$$\max_{u \in G} \Phi(u, u_{\varepsilon}) - \Phi(u_{\varepsilon}, u_{\varepsilon}) \leqslant \varepsilon.$$

Теорема. Допустим, что $\Phi(u,w)$, $((u,v)\in G\times G)$ — функция, удовлетворяющая условию Липшица с постоянной L, вогнутая по $u\in G$ при любом фиксированном $w\in G$, выпуклая по $w\in G$ при любом фиксированном $u\in G$, u, кроме того, $\Phi(u,u)$ $(u\in G)$ — вогнутая функция. В таком случае приведенный выше численный метод решения задачи $P(\Phi,G)$ позволяет при произвольном $\varepsilon>0$ найти ε -решение этой задачи за $k(\varepsilon)$ итераций, причем $k(\varepsilon)\leqslant]4(dL\varepsilon^{-1})^2[$, где d — диаметр G, под [a] при любом вещественном а понимается наименьшее целое число, большее либо равное a.

Пусть T — точечно-множественное отображение точек $u \in G$ в непустые множества $T(u) \subset \mathbf{E}$. Вариационное неравенство, определяемое отображением T, имеет вид

$$\langle t, u' - u \rangle \geqslant 0$$
 для всех $u \in G$, $t \in T(u)$, $u' \in G$.

Под решением этого вариационного неравенства понимается такая точка $u^* \in G$, что при некотором $t^* \in T(u^*)$ неравенство $\langle t^*, u' - u^* \rangle \geqslant 0$ выполняется для всех $u' \in G$. Введем точечно-множественное отображение $T_{\Phi}(u) = -\partial_u \Phi(u,u), \ u \in G$. Задача $P(\Phi,G)$ эквивалентна вариационному неравенству, определяемому отображением T_{Φ} . В работе [1] описан достаточно эффективный численный метод решения вариационных неравенств, определяемых монотонными отображениями. Предположения о том, что функция Φ удовлетворяет условию Липшица, о ее вогнутости по $u \in G$ при любом фиксированном $w \in G$ и монотонности отображения T_{Φ} обеспечивают сходимость этого метода. Таким образом, для решения задачи $P(\Phi,G)$ можно использовать метод из [1], если точечно-множественное обображение T_{Φ} обладает свойством монотонности. Заметим, что допущения относительно Φ , отмеченные в теореме, влекут за собой монотонность отображения T_{Φ} .

Работа выполнена при финансовой поддержке РФФИ, проект № 09-01-00156.

СПИСОК ЛИТЕРАТУРЫ

1. Гольштейн Е. Г. Метод решения вариационных неравенств, определяемых монотонными отображениями. — Ж. вычислит. матем. и матем. физ., 2002, т. 42, N_2 7.