И. Е. Тананко, И. В. Юдаева (Саратов, СГУ). О сети массового обслуживания с ненадежными системами, управлением потоком и задержкой информации.

Рассматривается система \mathcal{N} , состоящая из управляющего устройства и двух параллельных систем массового обслуживания S_1 и S_2 типа M|M|1 с интенсивностями обслуживания соответственно μ_1 и μ_2 . Требования поступают из источника пуассоновским потоком с интенсивностью λ_0 , пусть $\lambda_0 < \mu_i$, i = 1, 2. Предполагается, что система S_1 является абсолютно надежной, а система S_2 — ненадежной. Введем переменную k, принимающую значение 1, когда прибор системы S_2 исправен, и 0, когда он восстанавливается. Если k=1, то требования обслуживаются системой S_2 с интенсивностью μ_2 , если k=0, то обслуживание требований системой S_2 не производится. Длительность пребывания прибора системы S_2 в исправном или неисправном состояниях является экспоненциально распределенной случайной величиной с параметрами α и β соответственно. Предполагается, что в момент отказа прибора системы S_2 все требования, находившиеся в S_2 , остаются в этой системе и ожидают восстановления прибора. Предполагается, что управляющему устройству становится известно о выходе из строя ненадежной системы S_2 через фиксированный интервал времени, равный τ . Как только эта информация становится доступной управляющему устройству, поступление требований из источника в эту систему прекращается, а весь поток требований направляется в систему S_1 . Предполагается, что информация о восстановлении прибора ненадежной системы S_2 также становится доступной управляющему устройству через фиксированный интервал времени au и поток требований из источника в эту систему восстанавливается с исходным значением вероятности. Метод анализа основан на предположении, что средняя длительность переходного процесса поступления и обслуживания требований, вызванного отказом или восстановлением прибора системы S_2 , настолько меньше длительности пребывания прибора системы S_2 в исправном или неисправном состояниях, что можно пренебречь этим переходным процессом и считать, что система ${\cal N}$ находится в стационарном режиме на каждом из этих интервалов. Полагаем, что длительность au настолько мала, что изменение вероятностей состояний системы ${\mathcal N}$ на этом интервале производится в соответствии с определенной линейной функцией. Найдены основные стационарные характеристики системы \mathcal{N} .