Э. Ф. X а й р е т д и н о в (Москва, НИИМ МГУ). Новый подход к решению задачи о течении в пограничном слое.

При проектировании крыльев самолета основное внимание обращается на то, чтобы их обтекание было ламинарным. Ламинарность нарушается, если происходит отрыв пограничного слоя, образующегося на крыле.

Дифференциальные уравнения течения жидкости в пограничном слое, прилегающем к профилю, обтекаемому потенциальным потоком, представляются в виде [1], [2]:

$$u_x + v_y = 0$$
, $uu_x + vu_y = V(x)V'(x) + u_{yy} + \frac{1}{R}u_{xx}$. (1)

Здесь V(x) — распределение скорости вдоль профиля при обтекании его потенциальным потоком, R — число Рейнольдса (ввиду того, что $R \gg 1$, в уравнениях (1) обычно пренебрегают членом u_{xx} ; но делать это безоговорочно можно, только если этот член равномерно ограничен в области определения функции V(x)).

Решение уравнений (1) должно удовлетворять граничным условиям

$$y = 0: \quad v = u = 0; \qquad y \to \infty: \quad u \to V(x).$$
 (2)

(Уравнения (1)–(2) записаны в безразмерном виде. Функция V(x) задана со следующими свойствами: $V(0)=0,\ V(1)=1,\ V'(1)=0,\ V'(x)>0$ при $0< x<1,\ V'(x)<0$ при x>1.)

Отрыв происходит в кормовой части профиля, вниз по потоку от той точки, где достигается максимум внешней скорости — при $x=x_*>1$ [1], [2]. Точка отрыва определяется уравнением $u_u(x,0)=0$.

Вводя калиброванную функцию тока $\Psi(x,y)$: $\Psi(x,y)=\psi(x,y)/V(x),\ u=\psi_y=V\Psi_y,\ v=-\psi_x=-V(x)\Psi_x-V'(x)\Psi,$ сведем систему (1) к одному уравнению

$$\Psi_{yyy} = V'(x)(\Psi_y^2 - 1 - \Psi \Psi_{yy}) + V(\Psi_y \Psi_{xy} - \Psi_x \Psi_{yy}) - \frac{1}{R} \left(\Psi_{yxx} + 2 \frac{V'}{V} \Psi_{xy} + \frac{V''}{V} \Psi_y \right). \tag{3}$$

Его решение должно удовлетворять граничным условиям

$$y = 0: \quad \Psi = \Psi_y = 0, \qquad y = \infty: \quad \Psi_y = 1.$$
 (4)

При $R \to \infty$ уравнение (3) переходит в уравнение

$$\Psi_{yyy} = V'(x)(\Psi_y^2 - 1 - \Psi\Psi_{yy}) + V(x)(\Psi_y\Psi_{xy} - \Psi_x\Psi_{yy}). \tag{5}$$

Если скорость V(x) задана в виде полинома $V(x) = \sum_{i=0}^N a_i x^N \ (N \geqslant 2)$, то решение уравнения (5) можно строить в виде функционального ряда по положительным степеням x: $\Psi(x,y) = x^\alpha f_\alpha(y) \ (\alpha=0,1,\ldots)$, но чтобы указанный выше предельный переход был возможен в области $0\leqslant x< c_0/\sqrt{R} \ (c_0={\rm const}\sim 1)$, необходимо выполнение одного из двух условий: либо $a_0>0$, либо $a_0=0$, $a_1>0$, $a_2=0$ и ряд не должен содержать слагаемого с первой степенью x: $\alpha_1=0$.

В случае, когда $V(x) = a_0 + a_1 x$, уравнения (3) и (5) имеют общие решения. При $V = a_0$ это решение Blasius'а [1], при $a_0 > 0$, $a_1 < 0$ решение построил Howarth [1]. При $V = a_1 x$ решение (найдено Hiemenz'om [1]) имеет вид

$$\Psi(x,y) = x f_0(y). \tag{H.}$$

Оно описывает течение в окрестности передней кромки профиля с округлой (притупленной) зоной. Заметим, что как раз такие профили имеют крылья самолетов, летающих с дозвуковыми скоростями.

Когда $V(x) = x^m \ (0 < m < 1)$, уравнение (5) имеет решения вида

$$\Psi(x,y) = x^{(1+m)/2} f_0(\eta)$$
 $(\eta = yx^{(m-1)/2})$ (F. – Sk.)

(найденые Falkner'ом и S. Skan [1]). Но при 0 < m < 1 член u_{xx} в уравнении (1) для решения (F.–Sk.) обращается в ∞ при $x \to 0$, поэтому предельный переход $R \to \infty$ в уравнении (3) недопустим в области $0 \leqslant x \leqslant c_0/\sqrt{R}$.

Главной задачей теории пограничного слоя является выявление условий, при которых происходит отрыв пограничного слоя, и возможности влиять на них, чтобы в какой-то мере управлять отрывом. В настоящее время эту задачу решают приближенными способами, основанными на интегральном уравнении Кармана [2], не дающими возможности оценить точность полученного «решения». Существующие аналитические решения уравнений пограничного слоя в виде функциональных рядов по положительеым степеням переменной x для этой цели не используются, так как не дают удовлетворительного результата при определении точки отрыва (эти ряды медленно сходятся в области x > 1, в которой происходит отрыв).

Уравнение (5) преобразуется посредством замен: $\eta = y/h(x)$, $\Psi = h(x)F(x,\eta)$ (функция h(x) названа С.С.Григоряном калибрующей толщиной пограничного слоя), $V(x) = x^m \eta^{\varphi(x)}$ [3], $h(x) = \sqrt{x/V(x)}$ [4] и приобретает вид [3]:

$$F_{\eta\eta\eta} = m \left(F_{\eta}^2 - 1 - \frac{1+m}{2m} F F_{\eta\eta} \right) + x \varphi'(x) \left(F_{\eta}^2 - 1 - \frac{1}{2} F F_{\eta\eta} \right) + x (F_{\eta} F_{x\eta} - F_x F \eta \eta).$$

Когда функция $\varphi(x)$ задана в виде полинома $\varphi(x) = \sum_{i=0}^N b_i x^i$ $(N \geqslant 2)$, аналитическое решение этого уравнения представляется в виде функционального ряда $F(x,\eta) = x^\alpha f_\alpha(\eta)$ $(\alpha=0,1,2,\ldots)$, который при $x\to 0$ превращается в решение Falkner'a—S. Skan (в решение Hiemenz'a при m=1). С учетом приведенного выше замечания необходимо положить m=1, функцию $\varphi(x)$ представлять в виде $\varphi(x)=a_0+(1/2)a_2x^2+(1/3)a_3x^3+\cdots+(1/N)a_Nx^N$ (при этом $x\varphi'(x)=a_2x^2+a_3x^3+\cdots+a_Nx^N$), а решение следует искать в виде $F(x,\eta)=f_0(\eta)+x^2f_2(\eta)+x^3f_3(\eta)+\cdots=x^\alpha f_\alpha(\eta)$ $(\alpha=0,2,3,\ldots)$.

При m=1 оно представится в виде

$$F_{\eta\eta\eta} = F_{\eta}^{2} - 1 - FF_{\eta\eta} + x\varphi'(x)\left(F_{\eta}^{2} - 1 - \frac{1}{2}FF_{\eta\eta}\right) + x(F_{\eta}F_{x\eta} - F_{x}F\eta\eta). \tag{6}$$

Расчеты показывают, что решение уравнения (6), построенное в виде функционального ряда по положительный степеням x, не дает возиожности с требуейой точностью определить точку отрыва из-за медленной сходимости представляющего его ряда в области x>1.

Можно ожидать, что если построить решение уравнения (5) в виде функционального ряда по отрицательным степеням переменной x, то он в области x>1 будет сходиться существенно быстрее.

Для этого произведем замену $x=a\xi/(\xi-1)$ ($\xi=x/(x+a),\ a>0$). При этом $\xi=1-a/(x+a),\ dx/d\xi=a/(\xi-1)^2,\ x\,d\xi/dx=(a\xi/(\xi-1))(dx/d\xi)^{-1}=\xi(\xi-1).$ Так как $\varphi'(x)=\widetilde{\varphi}'(\xi)(d\xi/dx),$ то $x\varphi'(x)=\xi(1-\xi)\widetilde{\varphi}'(\xi)$ ($\varphi(x)=\widetilde{\varphi}(\xi)$). Точно так же $x(F_{\eta}F_{x\eta}-F_{x}F_{\eta\eta})=\xi(\xi-1)(F_{\eta}F_{\xi\eta}-F_{\xi}F_{\eta\eta}).$

Уравнение (6) представится в виде

$$F_{\eta\eta\eta} = F_{\eta}^{2} - 1 - FF_{\eta\eta} + \xi(\xi - 1)\widetilde{\varphi}'(\xi) \left(F_{\eta}^{2} - 1 - \frac{1}{2}FF_{\eta\eta}\right) + \xi(\xi - 1)(F_{\eta}F_{\xi\eta} - F_{\xi}F_{\eta\eta}). \tag{7}$$

Задавая функцию $\widetilde{\varphi}'(\xi)$ в виде $\widetilde{\varphi}'(\xi) = \sum_{i=2}^N b_i \xi^i \ (N \geqslant 2)$, решение уравнения (7) можно построить в виде функционального ряда $F(\xi,\eta) = f_0(\eta) + \xi^2 f_2(\eta) + \xi^3 f_3(\eta) + \cdots = \xi^{\alpha} f_{\alpha}(\eta) \ (\alpha = 0,2,3,\ldots)$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шлихтинг Γ . Теория пограничного слоя. М.: Наука, 1974, 741 с.
- 2. Лойцянский Л. Г. Ламинарный пограничный слой. М.: Физматгиз, 1962, 479 с.
- 3. Хайретдинов Э Ф. Новые точные решения уравнений пограничного слоя. Обозрение прикл. и промышл. матем., 2007, т. 14, в. 3, с. 570–572.
- 4. Шкадов В Я. Об интегрировании уравнений пограничного слоя. Докл. АН СССР, 1959, т. 126, № 4, с. 730–732.