ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 19 МАТЕМАТИКИ Вы

20

Выпуск 3

2012

Е. А. А к с е н о в а (Петрозаводск, ИПМИ КарНЦ РАН). Оптимальный метод перераспределения общей памяти для двухприоритетной очереди.

Математические модели оптимального управления n-приоритетной очередью и FIFO-очередями до переполнения выделенного объема памяти рассматривались в [1–2]. В данной работе предлагается математическая модель и алгоритм оптимального перераспределения памяти после переполнения для последовательного способа организации двухприоритетной очереди.

Рассмотрим очередь с двумя приоритетами, расположенную в памяти размера m единиц. Двухприоритетную очередь представим в виде двух последовательных FIFО-очередей [3]. Первой очереди присвоен приоритет 1, второй — приоритет 2. Наивысший приоритет 2.

Пусть известны вероятностные характеристики приоритетной очереди: p_i — вероятность включения элемента с приоритетом $i,\ i=1,2\,,\ q$ — вероятность исключения элемента из очереди, r — вероятность операции, не изменяющей длину очереди, где $p_1+p_2+q+r=1$.

Обозначим текущие длины очередей x_1 и x_2 . В очереди могут храниться элементы длины L. В качестве математической модели рассмотрим случайное блуждание по целочисленной решетке в прямоугольной области на плоскости $0\leqslant x_1 < s+1$, $0\leqslant x_2 < m/L-s+1$. Блуждание начинается в точке $x_1=0$, $x_2=0$. Переполнению первой очереди соответствует прямая $x_1=s+1$, переполнению второй очереди — прямая $x_2=m/L-s+1$. При переполнении одной из FIFO-очередей происходит перераспределение свободной памяти между FIFO-очередями и работа с программной системой продолжается. При попытке включения элемента в заполненную очередь, когда $x_1=s$ (или $x_2=m/L-s$), требуется определить новую область блуждания $0\leqslant x_1 < s^*+1$, $0\leqslant x_2 < m/L-s^*+1$, т.е. найти такое значение s^* , где $s^*>s$ (или $m/L-s^*>m/L-s$), чтобы среднее время до следующего переполнения одной из FIFO-очередей было максимальным.

Случайное блуждание по целочисленной решетке рассмотрим как конечную однородную поглощающую цепь Маркова. Среднее время вычисляется с помощью фундаментальной матрицы $N=(E-Q)^{-1}$, где Q — матрица вероятностей переходов из невозвратных состояний в невозвратные [4].

СПИСОК ЛИТЕРАТУРЫ

- 1. Aksenova E. A., Sokolov A. V. The optimal implementation of two FIFO-queues in single-level memory. Applied Mathematics, 2011, v. 2, № 10, p. 1297–1302.
- 2. Соколов А. В., Драц А. В. Оптимальное управление приоритетной очередью в памяти одного уровня. Труды КарНЦ РАН. Сер. математическое моделирование и информационные технологии. В. 2. Петрозаводск: КарНЦ РАН, 2011, с. 103—110.

[©] Редакция журнала «ОПиПМ», 2012 г.

- 3. *Боллапрагада В., Мэрфи К., Уайт Р.* Структура операционной системы Cisco IOS. М.: Вильямс, 2002.
- 4. *Кемени Дж.*, *Снелл Дж.* Конечные цепи Маркова. М.: Наука, 1970.