ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 21 МАТЕМАТИКИ Выпуск 1

2014

А. В. В а с и н (Пенза, ПГУ). О ненадежности схем в одном бесконечном базисе.

Рассматривается реализация булевых функций схемами из ненадежных функциональных элементов в произвольном полном конечном базисе B. Предполагаем, что все элементы схемы независимо друг от друга с вероятностью $\varepsilon \in (0,1/2)$ подвержены инверсным неисправностям на выходах. Эти неисправности характеризуются тем, что в исправном состоянии функциональный элемент реализует приписанную ему булеву функцию ψ , а в неисправном — функцию $\overline{\psi}$. Считаем, что схема S из ненадежных элементов реализует булеву функцию $f(x_1, x_2, \ldots, x_n)$, если при поступлении на входы схемы двоичного набора $\mathbf{a} = (a_1, a_2, \ldots, a_n)$ при отсутствии неисправностей на выходе схемы S появляется значение $f(\mathbf{a})$.

 $Henadeжностью\ P(S)\$ схемы S назовем максимальную вероятность ошибки на выходе схемы S при всевозможных входных наборах схемы. Пусть $P_{\varepsilon}(f)=\inf P(S)$, где инфимум берется по всем схемам S из ненадежных элементов, реализующим булеву функцию $f(x_1,x_2,\ldots,x_n)$. Схема A из ненадежных элементов, реализующая функцию f, называется асимптотически оптимальной (асимптотически наилучшей) по надежности, если $P(A)\sim P_{\varepsilon}(f)$ при $\varepsilon\to 0$.

Пусть

$$\begin{split} \Psi &= \{0,1,\overline{x}_1\} \cup \bigcup_{k=1}^{\infty} \{ \bigvee_{i=1}^{k} x_i \}, \\ \Theta &= \{0,1\} \cup \bigcup_{k=2}^{\infty} \{ \bigvee_{i=1}^{k} x_i \} \cup \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{k} \{ \bar{x}_j \& \bigvee_{i=1, i \neq j}^{k} x_i \}, \end{split}$$

а Ψ^* , Θ^* — множество функций двойственных функциям Ψ и Θ соответственно. С. И. Аксенов [2] сформулировал следующую теорему:

Теорема 1. Пусть B — полный базис u $B \nsubseteq \Psi$, $B \nsubseteq \Psi^*$, $B \nsubseteq \Theta$, $B \nsubseteq \Theta^*$. Тогда любую булеву функцию f можно реализовать схемой S над B c ненадежностью $P(S) \leqslant 4\varepsilon + c\varepsilon^2$ при $\varepsilon \in (0,\varepsilon_0]$, где константы c>0, $\varepsilon_0 \in (0,1/2)$ зависят от базиса.

Однако теорема 1 — только верхняя оценка, которая не дает представления о ненадежности схем в базисах B , удовлетворяющих $B\subseteq \Psi$, или $B\subseteq \Theta^*$, или $B\subseteq \Theta^*$.

С. И. Аксеновым [3] получена верхняя оценка ненадежности схем в произвольном полном конечном базисе при инверсных неисправностях на выходах элементов. Он доказал, что существуют такие константы $\varepsilon_0 \in (0,1/2)$ и d>0, зависящие от базиса, что любую булеву функцию f можно реализовать такой схемой S, что $P(S) \leqslant 5\varepsilon + d\varepsilon^2$ при $\varepsilon \in (0;\varepsilon_0]$.

В работе [4] явно найдены константы $d,\ \varepsilon_0$ и доказана теорема 2.

[©] Редакция журнала «ОПиПМ», 2014 г.

Теорема 2. В произвольном полном конечном базисе В любую булеву функцию f можно реализовать схемой A с ненадежностью $P(A) \leqslant 5\varepsilon + 182\varepsilon^2$ при $\varepsilon \in (0,1/960]$.

Теорема 2 справедлива и для базисов $\,B,\,$ удовлетворяющих условию $\,B\subseteq\Psi,\,$ или $\,B\subset\Psi^*.$

Автором в [1] решена задача построения асимптотически оптимальных по надежности схем при инверсных неисправностях на выходах элементов в полных базисах из трехвходовых элементов. В [1] доказаны нижние оценки ненадежности для базисов $B\subset\{0,1,\overline{x}_1,x_1\&x_2,x_1\&x_2\&x_3\},\ B\subset\{0,1,\overline{x}_1,x_1\vee x_2,x_1\vee x_2\vee x_3\},\$ и показано, для почти всех функций асимптотически оптимальные по надежности схемы имеют ненадежность, асимптотически равную 5ε при $\varepsilon\to 0$. Не трудно видеть, что эти базисы являются подмножествами Ψ или Ψ^* .

Нижние оценки ненадежности схем для произвольных базисов $B\subset \Psi$ или $B\subset \Psi^*$ были получены в этой работе.

Обозначим K(n) — множество булевых функций f, зависящих от переменных x_1, x_2, \ldots, x_n , не представимых в виде $(x_i^a \& g(\widetilde{x}))^b$ $(i=1,2,\ldots,n,\ a,b\in\{0,1\})$ и сформулируем теорему о нижних оценках ненадежности, для названных базисов.

Тогда справедлива следующая теорема:

Теорема 3. Пусть B — полный конечный базис u $B \subset \Psi$, или $B \subset \Psi^*$. Пусть функция $f\widetilde{x}) \in K(n)$, u S — любая схема, реализующая функцию f. Тогда $P(S) \geqslant 5\varepsilon(1-\varepsilon)^4$ при $\varepsilon \in (0,1/960]$.

Из теорем 2 и 3 следует, что в любом из полных базисов B таких, что $B\subset \Psi$, $B\subset \Psi^*$, для почти всех функций асимптотически оптимальные по надежности схемы функционируют с ненадежностью, асимптотически равной 5ε при $\varepsilon\to 0$.

Работа поддержана грантом РФФИ, проект № 14-01-31360 и № 14-01-00273.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bacun A. B. Асимптотически оптимальные по надежности схемы в полных базисах из трехвходовых элементов. Дисс. канд. физ.-матем. наук. Пенза, 2010, 100 с.
- 2. Аксенов С. И. О надежности схем в широком классе полных базисов. Материалы IX Международного семинара «Дискретная математика и ее приложения», посвященного 75-летию со дня рождения академика О. Б. Лупанова. (Москва, МГУ, 18–23 июня 2007 г.)./ Под ред. О. М. Касим-Заде. М: Изд-во механико-математического факультета МГУ, 2007, с. 55–56.
- 3. *Аксенов С. И.* О надежности схем над произвольной полной системой функций при инверсных неисправностях на выходах элементов. Изв. ВУЗов. Поволжский регион. Естественные науки, 2005, № 6(21), с. 42–55.
- 4. *Алехина М. А.*, *Васин А. В.* О надежности схем в базисах, содержащих функции не более чем трех переменных. Ученые записки Казанского государственного университета. Серия физ.-матем. науки. Изд-во Казанского университета, 2009, т. 151, кн. 2, с. 25–35.