ОБОЗРЕНИЕ ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ МАТЕМАТИКИ Выпуск 4

2014

Том 21

А. А. Елистратов, Н. В. Никонов, А. О. Шумилов (Москва, ТВП). О паддинг-атаках на криптографические протоколы, исполь-

зующие стандартные n-разрядные блочные режимы шифрования.

Одной из первых работ, посвященных так называемым паддинг-атакам (от англ. padding-attack) на криптопротоколы TLS, IPsec и др. является работа С. Воденея [1], представленная на конференции Eurocrypt 2002. Описанная в работе [1] атака относится к классу активных атак с подобранными шифртекстами, которая позволяет без нахождения ключа найти блоки открытого текста x_1, \ldots, x_N исходя из соответствующих перехваченных блоков шифртекста y_1, \ldots, y_N , полученных в режиме CBC ([2, 3]) и некоторой дополнительной информации. Основой данной атаки является знание того факта, что последний неполный блок непостредственно перед шифрованием в режиме CBC должен быть дополнен до полного блока известной последовательностью байтов — паддингом. Кроме того, для проведения атаки необходимо наличие «оракула», который некоторым способом сообщает об ошибке при расшифровании в случае получения неверного паддинга или другой информации, связанной с паддингом. Применительно к протоколу TLS таким оракулом может являться TLS Alert Protocol (протокол извещения, см.[4, 5]), а для IPsec — протокол ICMP (Internet Control Message Protocol, см. [6]).

В данных тезисах авторы обращают внимание на тот факт, что аналогичные атаки возможны в некоторых случаях и при использовании других режимов шифрования, в частности режимов гаммирования: СГВ, ОГВ и СТК (см. [2, 7, 8, 9, 10]), которые не требуют дополнения последнего неполного блока до полного. Для TLS такая возможность может возникнуть в случае известных полей данных (например, для сокрытия истинной длины открытого текста) или при встраивании блочной шифрсистемы с режимами гаммирования именно как блочной шифрсистемы, а не поточной, что потребует присутствия однобайтового поля PL (Padding Length), содержащего 0. Для IPsec эта возможность обуславливается наличием однобайтовых полей PL и NH (Next Header). Данные поля (а, возможно и другие) по сути будут играть роль паддинга, что позволит находить не менее одного байта каждого блока открытого сообщения.

Пусть имеются зашифрованные блоки y_1, y_2, \ldots, y_N , полученные в одном из четырех упомянутых выше режимах шифрования из блоков открытого текста x_1, x_2, \ldots, x_N , уравнения в кратком виде для которых представлены в табл. (столбец 2).

[©] Редакция журнала «ОПиПМ», 2014 г.

Таблица

Режим	Уравнение	Формируемое	Последний при
шифро-	зашифрования	сообщение Y ,	расшифровании Y блок X ,
вания		— обозначение	у которого проверяется
		конкатенации блоков	паддинг
CBC	$y_j = E_k(x_j \oplus y_{j-1}),$	$r \oplus y_{j-1} \parallel y_j$	$E_k^{-1}(y_j) \oplus y_{j-1} \oplus r = x_j \oplus r$
	$y_0 = IV$		
CFB	$y_j = x_j \oplus E_k(y_{j-1}),$	$y_{j-1} \parallel r \oplus y_j$	$y_j \oplus E_k(y_{j-1}) \oplus r = x_j \oplus r$
	$y_0 = E_k(IV)$		
		j−1	
OFB	$y_j = x_j \oplus z_j,$	$\overbrace{r' \parallel \cdots \parallel r'} \parallel r \oplus y_j,$	$y_j \oplus z_j \oplus r = x_j \oplus r$
	$z_0 = IV$,		
	$z_j = E_k(z_{j-1})$		
CTR	$y_j = x_j \oplus E_k(z_j),$	r' — случайный	
	$z_0 = E_k(IV),$	блок	
	$z_j = C(z_{j-1}),$		
	C — функция		
	счетчика		

Приведем общий алгоритм (не зависящий от вида паддинга и т.п.), основанный на содержимом табл., для определения последнего байта $x_j^{(b)}$ блока $x_j = x_j^{(1)}, x_j^{(2)}, \ldots, x_j^{(b)}, \ b$ — размер в байтах блока шифрсистемы E_k (блочной системы шифрования с неизвестным ключом k) при условии известного паддинга. В обозначениях алгоритма $\Omega(Y)$ — результат проверки корректности паддинга у X (см. табл., столбец 4) после расшифрования сообщения (табл., столбец 3) исходя из того или иного паддинга (1 — паддинг корректен, 0 — нет).

- 1. Выбрать случайно $r = r^{(1)}, r^{(2)}, \dots, r^{(b)};$
- 2. Для всех возможных $r^{(b)}$ выполнить $\{$ если $\Omega(Y)=1,$ переход на $3\}$;
- 3. Положить $x_i^{(b)} = (X^{(b)} \oplus r^{(b)})$, где $X^{(b)}$ последний байт X.

В зависимости от вида паддинга, рассматриваемых криптопротоколов и т.п. в ряде случаев представляется возможным повторить данную процедуру для определения последующих байтов блока x_j , а в дальнейшем — и для всех блоков вплоть до первого. В этом случае трудоемкость такого алгоритма может быть оценена величиной $O(b\,N\,2^b)$.

В некоторых реализациях потребуется перебирать по два и более байтов блока для нахождения соответствующих байтов открытого текста. Кроме того, принципиальным для нахождения первого блока x_1 может оказаться знание или незнание вектора инициализации IV. Также отметим, что в реальности не всегда удается получить точную информацию от «оракула» Ω . Так например, все ошибки в TLS (о некорректном паддинге, некорректном коде аутентичности, просроченном сертификате) шифруются. Для того, чтобы различить эти ошибки, можно использовать вторичные признаки, например, разницу откликов об этих ошибках по времени (см. [4, 5]).

СПИСОК ЛИТЕРАТУРЫ

- Vaudenay S. Security flaws induced by CBC padding applications to SSL, IPSEC, WTLS. — Lect. Notes Comput. Sci., 2002, v. 2332, p. 534–546.
- 2. FIPS 81. FIPS Publication 81. DES Modes of Operation. U.S. DoC/NIST. December 1980.

- 3. Popov V., Kurepkin I., Leontiev S. Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms. RFC 4357, 2006.
- 4. Canvel B., Hiltgen A., Vaudenay S., Vuagnoux M. Password Interception in a SSL/TLS Channel. Lect. Notes Comput. Sci., 2003, v. 2729.
- 5. AlFardan N. J., Paterson K. G. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. Egham, Surrey: Royal Holloway, Univ. London, 2013.
- 6. Degabriele JP., Paterson K. G. Attacking the IPsec Standards in Encryption-only Configurations. In: IEEE Symposium on Privacy and Security. Piscataway: IEEE Comput. Soc., 2007.
- 7. ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. М.: Изд-во стандартов, 1989.
- 8. ГОСТ Р ИСО/МЭК 10116-93. Информационная технология. Режимы работы для алгоритма n-разрядного блочного шифрования. М.: Изд-во стандартов, 1994.
- 9. Ferguson N., Shneier B., Tadayoshi K. Cryptography Engineering. Design Principles and Practical Application. N.Y. etc.: Wiley, 2010.
- 10. Dolmatov V. GOST 28147-89: Encryption, Decryption, and Message Authentication Code (MAC) Algorithms. RFC 5830, 2010.