ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ МАТЕМАТИКИ Выпуск 1

2

2022

А. В. А нашкин (Москва, Лаб. ТВП). Об обратной матрице к MDS матрице специального вида.

УДК 512.643.8

DOI https://doi.org/10.52513/08698325_2022_29_1_1

Restome: Приводится обратная матрица к MDS матрице размера 5×5 над конечным полем характеристики 2, элементы которой выбираются из множества {единичный элемент поля, некоторый элемент, не равный единичному, и его квадрат}.

Kлючевые cлова: MDS матрица, максимально рассеивающая матрица, циркулянтная матрица, поле Γ алуа $\mathbf{GF}(2^t)$.

В работе [1] изучаются квадратные MDS матрицы над конечным полем характеристики 2. Одним из основных критериев для матрицы над конечным полем быть MDS матрицей является условие, что все ее квадратные подматрицы невырожденны [2].

Сформулируем основные результаты работы [1]. Поле $\mathbf{GF}(2^t)$, над которым далее рассматриваются матрицы, считаем фиксированным. Для некоторого непустого множества D — подмножества поля $\mathbf{GF}(2^t)$, через W(m,D) обозначим множество всех MDS матриц размера $\times m$, $m \in \mathbf{N}$, элементы которых принадлежат множеству D.

3 а м е ч а н и е 1. Если один из элементов матрицы равен 0, то матрица не является MDS-матрицей и, значит, можем считать, что $0 \notin D$.

З а м е ч а н и е 2. Пусть матрица B принадлежит множеству W(m,D). Если $c \in \mathbf{GF}(2^t), \ c \neq 0$, то $cB \in W(m,cD)$. В частности, при исследовании множеств W(m,D) при различных m и D можно ограничиться рассмотрением множеств D с условием $e \in D$, где e— единица поля $\mathbf{GF}(2')$. В том числе и из результатов работы [1] вытекают следующие утверждения.

Утверждение 1. $Ecau |D| = 1 \ u \ m > 2, \ mo \ W(m, D) = \emptyset.$

Утверждение 2. $Ecan(D) = 2 \ u \ m > 4, mo \ W(m, D) = \emptyset.$

Далее рассматриваем случай, когда |D|=3 и $D=D(\alpha)=\{e,\alpha,\alpha^2\}$, $\alpha\in \mathbf{GF}(2')$, и, значит, $\alpha\neq 0$ и $\alpha\neq e$, что равносильно тому, что α не является корнем многочлена первой степени над полем $\mathbf{GF}(2)$.

Утверждение 3. Eсли $|D|=3, \ D=D(\alpha)=\{e,\alpha,\alpha^2\}, \ \alpha\in \mathbf{GF}(2') \ u \ m>5,$ $mo\ W(m,D)=\oslash.$

В группе $\mathbf{GL}(m,\mathbf{GF}(2'))$ квадратных обратимых матрип размера $m \times m$ над полем $\mathbf{GF}(2')$ рассмотрим подгруппу \overline{S}_M перестановочных матрип, $|\overline{S}_m| = m!$.

Поскольку перестановка строк и столбцов MDS матрицы не изменяет ее свойство быть MDS матрицей, рассмотрим действие группы $\overline{S}_m \times \overline{S}_m$ на непустом множестве W(m,D, полагая

$$(g,h)(A)=g^{-1}\cdot A\cdot h$$
 для $A\in W(m,D)$ и $(g,h)\in \overline{S}_m imes \overline{S}_m.$

Утверждение 4. Пусть $D=D(\alpha)=\{e,\alpha,\alpha^2\}$, $\alpha\in\mathbf{GF}(2')$. Множество W(5,D) непусто тогда и только тогда, когда элемент α не является корнем ни одного неприводимого многочлена степени не выше 3 над полем $\mathbf{GF}(2)$. При этом

[©] Редакция журнала «ОПиПМ», 2022 г.

группа $\overline{S}_5 imes \overline{S}_5$ действует на множестве W(5,D(lpha)) транзитивно, т. е. с точностью до перестановки строк и столбцов множество W(5,D(lpha)) состоит всего из одной матрицы.

3 а м е ч а н и е 3. Поскольку в кольце многочленов над полем характеристики 2 выполняются соотношения $x^5 + x^4 + e = (x^2 + x + e)(x^3 + x + e)$ и $x^5 + x + e = (x^2 + x + e)(x^3 + x^2 + e)$, упоминание многочленов $x^5 + x + e$ и $x^5 + x^4 + e$ в следствиях 6 и 7 работы [1, с. 23 и с. 27, соответственно] является излишним.

S а м е ч а н и е 4. Нетрудно показать, что стабилизатор любого элемента $B \in W(5,D(\alpha))$ в группе $\overline{S}_5 \times \overline{S}_5$ имеет порядок 10 (и изоморфен группе диэдра). И следовательно, количество различных элементов в множестве $W(5,D(\alpha))$ (при условии, что это множество не пусто!) равно:

$$|W(5,\alpha)| = \frac{|\overline{S}_5 \times \overline{S}_5|}{10} = 1440.$$

Поскольку ни в поле $\mathbf{GF}(4)$, ни в поле $\mathbf{GF}(8)$ нет подходящих под условие утверждения 4 элементов α , то справедливо следующее

Следствие 1. Если t=2 или $t=3, \alpha \in \mathbf{GF}(2'), mo \ W(5,D(\alpha))=\varnothing$.

Утверждение 5. Пусть $D=D(\alpha)=\{e,\alpha,\alpha^2\},\ \alpha\in \mathbf{GF}(2').$ Множество W(4,D) непусто тогда и только тогда, когда элемент α не является корнем ни одного неприводимого многочлена степени не выше 3 над полем $\mathbf{GF}(2)$. При этом группа $\overline{S}_4 \times \overline{S}_4$ при действии на множестве $W(4,D(\alpha))$ имеет три орбиты, т. е. с точностью до перестановки строк и столбцов множество $W(4,D(\alpha))$ состоит из трех матрии.

Вернемся к случаю $m=5\,$ и сформулируем некоторое новые результаты. В работе [1] приведена матрица

$$B = \begin{pmatrix} \alpha & e & e & a^2 & a^2 \\ e & \alpha & \alpha^2 & e & \alpha^2 \\ e & \alpha^2 & \alpha & \alpha^2 & e \\ \alpha^2 & e & \alpha^2 & \alpha & e \\ \alpha^2 & \alpha^2 & e & e & \alpha \end{pmatrix}$$

из $W(5, D(\alpha))$.

З а м е ч а н и е 5. Перестановкой строк и столбцов матрицу B можно привести к циркулянтной матрице: $C=\mathrm{Cir}(\alpha,e,\alpha^2,\alpha^2,e)$.

Утверждение 6. Пусть $\mathrm{HOД}\left(t,3\right)=1$), тогда среди квадратных матриц размера 5×5 над полем $\mathrm{GF}(2')$ не менее $1440\cdot (2^t-4)$ MDS матриц, элементы каждой из которых имеют следующий вид: единичный элемент поля, некоторый элемент, не равный единичному, и его квадрат.

Действительно, совпадение множеств $\{\alpha,\alpha^2\}$ и $\{\beta,\beta^2\}$ возможно только в случае, если $\alpha=\beta$ или $(\alpha=\beta^2$ и $\alpha^2=\beta$). Но в последнем случае получаем, что $\alpha^4=\alpha$, что равносильно $\alpha(\alpha+e)(\alpha^2+\alpha+e)=0$. Таким образом, для любого элемента α из поля $\mathbf{GF}(2')$, который не является корнем неприводимого многочлена степени не выше второй над полем $\mathbf{GF}(2)$, множество $W(5,D(\alpha))\neq \emptyset$ и, следовательно, $|W(5,D(\alpha))|=1440$. При этом, если $\alpha,\beta\in\mathbf{GF}(2'),\ \alpha\neq\beta$, и каждый из этих элементов не является корнем неприводимого многочлена степени не выше второй над полем $\mathbf{GF}(2)$, то множества $\{\alpha,\alpha^2\}$ и $\{\beta,\beta^2\}$ не пересекаются, а значит, не пересекаются и множества $W(5,D(\alpha))$ и $W(5,D(\beta))$.

Таким образом, к важным результатам работы [1] для случая m=5 следует отнести единственный eud матрицы из $W(5,D(\alpha))$, к которому перестановкой строк и столбцов приводится произвольная MDS матриц, элементы которой выбираются из множества $\{e,\alpha,\alpha^2\}$, независимость этого euda от элемента α , а также достаточно большое количество таких MDS матриц.

В работе [1], тем не менее, не приводится вид матрицы обратной, к матрице B, которая, согласно [3], также является MDS матрицей. Непосредственными вычислениями получаем:

$$B^{-1} = \alpha^{-1} f(\alpha)^{-1} \begin{pmatrix} f(\alpha) & g(\alpha) & g(\alpha) & h(\alpha) & h(\alpha) \\ g(\alpha) & f(\alpha) & h(\alpha) & g(\alpha) & h(\alpha) \\ g(\alpha) & h(\alpha) & f(\alpha) & h(\alpha) & g(\alpha) \\ h(\alpha) & g(\alpha) & h(\alpha) & f(\alpha) & g(\alpha) \\ h(\alpha) & h(\alpha) & g(\alpha) & g(\alpha) & f(\alpha) \end{pmatrix},$$

где $f(x), h(x), g(x) \in \mathbf{GF}(2)[x]$ — многочлены степени 3:

$$f(x) = x^{3} + e = (x^{2} + x + e)(x + e),$$

$$h(x) = x^{3} + x + e,$$

$$g(x) = x^{3} + x^{2} + e.$$

Тот факт, что матрица B^{-1} состоит всего из трех различных элементов, также следует из результатов работ [1, 4]. Действительно, любая квадратная подматрица MDS матрицы также является MDS матрицей [4, пункт 1 следствия из утверждения 1], а подматрицы размера 4×4 матрицы B с точностью до перестановок строк и столбцов могут быть только трех «видов» [1]. Фактически

$$\frac{f(\alpha)}{\alpha f(\alpha)}$$
, $\frac{h(\alpha)}{\alpha f(\alpha)}$ и $\frac{g(\alpha)}{\alpha f(\alpha)}$

— это значения определителей этих трех матриц.

Задавая поле $\mathbf{GF}(2'),\ t\geqslant 4$, как фактор-кольцо кольца многочленов $\mathbf{GF}(2)[x],$ по идеалу, порожденному некоторым неприводимым многочленом $g(x)\in\mathbf{GF}(2)[x]$ степени t, и выбирая в качестве элемента α корень многочлена q(x), можно «вычислять» значения

$$\alpha^{-1}$$
, $\frac{h(\alpha)}{\alpha f(\alpha)}$ \mathbf{H} $\frac{g(\alpha)}{\alpha f(\alpha)}$

представляя их значениями многочленов степеней меньших, чем t, в точке $\alpha.$

СПИСОК ЛИТЕРАТУРЫ

- 1. Анашкин А. В. Полное описание одного класса MDS-матриц над конечным полем характеристики 2. Математические вопросы криптографии, 2017, т. 8, в. 4, с. 5—28. // Anashkin A. V. The complete classification of a set of MDS matrices over finite field of characteristic 2. Mathematical Aspects of Cryptography, 2017, v. 8, is. 4, p. 5–28. (In Russian.)
- 2. *Мак-Вильямс Н. Дж.*, *Слоэн Н. Дж. А.* Теория кодов, исправляющих ощибки.— Связь. М, 1979.// *MacWilliams F. J.*, *Sloane N. J. A.* The theory of error correcting codes. North-Holland Publishing Company. Amsterdam. New York. Oxford, 1977.
- 3. Анашкин А. В. Об одном свойстве матриц. Обозрение прикл. и промышл. математ., 2015, т. 22, в. 5, с. 559–561. // Anashkin A. V. On a characteristic of matrices. OPPM Surv. Appl. Industr. Math., 2015, v. 22, is. 5, p. 559–561. (In Russian.)
- 4. *Анашкин А. В.* Канонический вид матриц из одного класса. Обозрение прикл. и промышл. матем., 2016, т. 23, в. 5, с. 457–459.// *Anashkin A. V.* A canonical form of some matrices. OPPM Surv. Appl. Industr. Math., 2016, v. 23, is. 5, p. 457–459. (In Russian.)

UDC 512.643.8

DOI https://doi.org/10.52513/08698325_2022_29_1_1

Anashkin A. V. (Moscow, TVP Laboratories). On inverse of some MDS matrix.

Abstract: We calculate the inverse matrix to the square 5×5 MDS matrix over finite field F_{2^t} whose entries are from the set: $\{1,\alpha,\alpha^2\}$.

Keywords: MDS matrix, circulant matrix, finite field F_{2^t} .

