IV INTERNATIONAL BALTIC SYMPOSIUM ON APPLIED AND INDUSTRIAL MATHEMATICS

REFERENCES

1. Mosseri R., DiVincenzo D. P., Sadoc J. F., Brodsky M. H. Polytope model and the electronic and structural properties of amorphous semiconductors. - Phys. Rev. B., 1985, v. 32, № 6, p. 3974-4000.
2. Coxeter H. S. M. Regular Polytopes. N.Y.: Dover Publ., 1973, 321 p.
3. Talis A. L., Rabinovich A.L. Mappings of 4-dimensional 240 -vertex polytope $\{240\}$. I. Linear diamond-like structures and tetrahedrally coordinated chains. - Crystallogr. Reports, 2020, v. 65, № 5, p. 687-696.
4. Sadoc J.F. Helices and helix packings derived from the $\{3,3,5\}$ polytope. - Eur. Phys. J. E., 2001, v. 5, p. 575-582.
5. Lord E. A., Ranganathan S. Sphere packing, helices and the polytope $\{3,3,5\}$. - Eur. Phys. J. D., 2001, v. 15, p. 335-343.
6. Skilling J. Uniform compounds of uniform polyhedra. - Math. Proc. Camb. Phil. Soc., 1976, v. 79, № 5, p. 447-457.
UDC 548.1:539.199
Talis A. L., Rabinovich A.L. (Moscow, A.N. Nesmeyanov Institute of Organoelement Compounds of the RAS; Petrozavodsk, Institute of Biology, Karelian Research Centre of the RAS). Linear substructures as mappings from a fourdimensional diamond-like polytope: an approach for characterization of noncrystallographic symmetry.

Abstract: The Hopf fibration formalism for the polytope $\{240\}$ allows constructing a number of its linear substructures. An approach has been developed for their grouptheoretical description. The symmetry groups of the complexes of such substructures are isomorphic to subgroups of the permutation group of the polytope's vertices.

Keywords: polytope $\{240\}$, linear diamond-like substructures, non-crystallographic symmetry.

[^0]
[^0]: (c) Редакция журнала «ОПиПМ», 2020 г.

