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§ 1. Introduction

Interest in the problems of moment characterizations of probability
distributions does not fade due to the success of Stein’s method, which has
become, in particular, one of the important tools for obtaining bounds on
errors in approximation problems for sums of dependent random variables.
Moreover, in the cases important in practice this method often makes it
possible to estimate the distances between pre-limit and limit (called target
or nested as well) distributions and to compute sharp rates of convergence in
stochastic approximation problems, or to compare pairs of distributions (see,
for example, (Ross, 2011; Barbour and Chen, 1972) and Ley et al. (2017).
This year we mark the fiftieth anniversary of publication of the seminal

Charles Stein’s classic paper (Stein, 1972) which turned out to be the source
of a fruitful branch of contemporary probability theory. On this occasion, we
would like to draw attention to essential contributions to this area regarding
the paradigm of Stein’s method and to make some comments on interesting
details which appears to be missed by experts in the Stein’s method and its
users.

§ 2. Linear characterizing identities
for probability distributions in the operator setting

The original Stein’s (or Stein–Chen) method is based on two moment
identities valid for random variables having Gaussian or Poisson distribu-
tions correspondingly. These identities are exceedingly valuable owing to
their so-called characterizing property : if for a random variable the identity is
valid on some special class of functions then the only possible distribution of
this variable is Gaussian or Poisson correspondingly (see (Stein, 1972; Chen,
1975).
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for the hypergeometric distribution with parameters n,N,R (cf. (Holmes,
2004, p. 55)), a little bit different coefficient at X term is obtained in
(Schutens, 2001, subsection 5.8),

A
t(n) = X

2
D − (n−1)X + nD (23)

for the Student’s t-distribution t
n
with n = 1, 2, . . . degrees of freedom

(cf. (Schoutens, 2001, subsection 5.4)). All distributions characterizing by
operators (20)–(23) are members of Pearson’s family in the continuous case
or Ord’s family in the discrete case (Schoutens, 2001; Afendras et al., 2018)
In some sense the characterizing identity for the circular law with radius 2

ASemicircle(2) = X
2
D + 3X − 4D

(cf. (Götze and Tikhomirov, 2006, eq. 3.1)) is out of line.
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