КНИГИ ПО АНАЛИЗУ ВРЕМЕННЫХ РЯДОВ
Michel M.Dacorogna, Ramazan Gencay, Ulrich Muller, Richard B.Olsen, Olivier V.Pictet
An Introduction to High-Frequency Finance
Цена: 51.58 GBP (в твердом переплете)
Книга "An Introduction to High-Frequency Finance" - это первый и единственный
источник, где собрано все, что известно о высокочастотных данных.
Изложенный в книге материал позволяет осуществлять анализ, моделирование
и получение выводов на основе высокочастотных финансовых временных рядов.
При рассмотрении рынков валют, процентных ставок и фьючерсов на облигации,
а, в особенности, рынка обменных курсов иностранных валют, обобщенный взгляд
на методы изучения высокочастотных вренных рядов позволяет исследовать процесс
формирования цен. В заключении сделан обзор приемов для построения
моделей систематической торговли финансовыми активами.
Contents:
- List of Figures
- List of Tables
- Preface
- Acknowledgments
- 1. Introduction
- 1.1 Markets: The Source of High-Frequency Data
- 1.2 Methodology of High-Frequency Research
- 1.3 Data Frequency and Market Information
- 1.4 New Levels of Significance
- 1.5 Interrelating Different Time Scales
- 2. Markets and Data
- 2.1 General Remarks on Markets and Data Types
- 2.1.1 Spot Markets
- 2.1.2 Futures Markets
- 2.1.3 Option Markets
- 2.2 Methodology of High-Frequency Research
- 2.2.1 Structure of the Foreign Exchange Spot Market
- 2.2.2 Synthetic Cross Rates
- 2.2.3 Multiple Contributor Effects
- 2.3 Over-the-Counter Interest Rate Markets
- 2.3.1 Spot Interest Rates
- 2.3.2 Foreign Exchange Forward Rates
- 2.4 Interest Rate Futures
- 2.4.1 General Description of Interest Rate Futures
- 2.4.2 Implied Forward Interest Rates and Yield Curves
- 2.5 Bond Futures Markets
- 2.5.1 Bonds and Bond Futures
- 2.5.2 Rollover Schemes
- 2.6 Commodity Futures
- 2.7 Equity Markets
- 3. Time Series of Interest
- 3.1 Time Series and Operators
- 3.2 Variables in Homogeneous Time Series
- 3.2.1 Interpolation
- 3.2.2 Price
- 3.2.3 Return
- 3.2.4 Realized Volatility
- 3.2.5 Bid-Ask Spread
- 3.2.6 Tick Frequency
- 3.2.7 Other Variables
- 3.2.8 Overlapping Returns
- 3.3 Convolution Operators
- 3.3.1 Notattion Used for Time Series Operators
- 3.3.2 Linear Operator and Kernels
- 3.3.3 Build-Up Time Interval
- 3.3.4 Homogeneous Operators and Robustness
- 3.3.5 Exponential Moving Average (EMA)
- 3.3.6 The Iterated EMA Operator
- 3.3.7 Moving Average (MA)
- 3.3.8 Moving Norm, Variance, and Standard Deviation
- 3.3.9 Differential
- 3.3.10 Derivative and -Derivative
- 3.3.11 Volatility
- 3.3.12 Standardized Time Series, Moving Skewness, and Kurtosis
- 3.3.13 Moving Correlation
- 3.3.14 Windowed Fourier Transform
- 3.4 Microscopic Operators
- 3.4.1 Backward Shift and Time Translation Operators
- 3.4.2 Regular Time Series Operator
- 3.4.3 Microscopic Return, Difference, and Derivative
- 3.4.4 Microscopic Volatility
- 3.4.5 Tick Frequency and Activity
- 4. Adaptive Data Cleaning
- 4.1 Introduction: Using a Filter to Clean the Data
- 4.2 Data and Data Errors
- 4.2.1 Time Series of Ticks
- 4.2.2 Data Error Types
- 4.3 General Overview of the Filter
- 4.3.1 The Functionality of the Filter
- 4.3.2 Overview of the Filtering Algorithm and Its Structure
- 4.4 Basic Filtering Elements and Operations
- 4.4.1 Credibility and Trust Capital
- 4.4.2 Filtering of Single Scalar Quotes: The Level Filter
- 4.4.3 Pair Filtering: The Credibility of Returns
- 4.4.4 Computing the Expected Volatility
- 4.4.5 Pair Filtering: Comparing Quote Origins
- 4.4.6 A Time Scale for Filtering
- 4.5 The Scalar Filtering Window
- 4.5.1 Entering a New Quote in the Scalar Filtering Window
- 4.5.2 The Trust Capital of a New Scalar Quote
- 4.5.3 Updating the Scalar Window
- 4.5.4 Dismissing Quotes from the Scalar Window
- 4.5.5 Updating the Statistics with Credible Scalar Quotes
- 4.5.6 A Second Scalar Window for Old Valid Quotes
- 4.6 The Full-Quote Filtering Window
- 4.6.1 Quote Splitting Depending on the Instrument Type
- 4.6.2 The Basic Validity Test
- 4.6.3 Transforming the Filtered Variable
- 4.7 Unvariate Filtering
- 4.7.1 The Results of Univariate Filtering
- 4.7.2 Filtering in Historical and Real-Time Modes
- 4.7.3 Choosing the Filter Parameters
- 4.8 Special Filter Elements
- 4.8.1 Multivariate Filtering: Filtering Sparse Data
- 4.9 Behavior and Effects of the Data Filter
- 5. Basic Stylized Facts
- 5.1 Introduction
- 5.2 Price Formation Process
- 5.2.1 Negative First-Order Autocorrelation of Returns
- 5.2.2 Discreteness of Quoted Spreads
- 5.2.3 Short-Term Triangular Arbitrage
- 5.3 Institutional Structure and Exogeneous Impacts
- 5.3.1 Institutional Framework
- 5.3.2 Positive Impact of Official Interventions
- 5.3.3 Mixed Effect of News
- 5.4 Distributional Properties of Return
- 5.4.1 Finite Variance, Symmetry and Decreasing Fat-Tailedness
- 5.4.2 The Tail Index of Return Distributions
- 5.4.3 Extreme Risks in Financial Markets
- 5.5 Scaling Laws
- 5.5.1 Empirical Evidence
- 5.5.2 Distributions and Scaling Laws
- 5.5.3 A Simple Model of the Market Maker Bias
- 5.5.4 Limitations of the Scaling Laws
- 5.6 Autocorrelation and Seasonality
- 5.6.1 Autocorrelations of Returns and Volatility
- 5.6.2 Seasonal Volatility: Across Markets for OTC Instruments
- 5.6.3 Seasonal Volatility: U-Shaped for Exchange Traded Instruments
- 5.6.4 Deterministic Volatility in Eurofutures Contracts
- 5.6.5 Bid-Ask Spreads
- 6. Modeling Seasonal Volatility
- 6.1 Introduction
- 6.2 A Model of Market Activity
- 6.2.1 Seasonal Patterns of the Volatility and Presence of Markets
- 6.2.2 Modeling the Volatility Patterns with an Alternative Time
Scale and an Activity Variable
- 6.2.3 Market Activity and Scaling Law
- 6.2.4 Geographical Components of Market Activity
- 6.2.5 A Model of Intraweek Market Activity
- 6.2.6 Interpretation of the Activity Modeling Results
- 6.3 A New Business Time Scale (-Scale)
- 6.3.1 Definition of the -Scale
- 6.3.2 Adjustments of the -Scale Definition
- 6.3.3 A Ratio Test for the -Scale Quality
- 6.4 Filtering Intraday Seasonalities with Wavelets
- 7. Realized Volatility Dynamics
- 7.1 Introduction
- 7.2 The Bias of Realized Volatility and Its Correction
- 7.3 Conditional Heteroskedasticity
- 7.3.1 Autocorrelation of Volatility in -Time
- 7.3.2 Short and Long Memory
- 7.4 The Heterogeneous Market Hypothesis
- 7.4.1 Volatilities of Different Time Resolution
- 7.4.2 Asymmetric Lead-Lag Correlation of Volatilities
- 7.4.3 Conditional Predictability
- 8. Volatility Processes
- 8.1 Introduction
- 8.2 Intraday Volatility and GARCH Models
- 8.2.1 Parameter Estimation of GARCH Models
- 8.2.2 Temporal Aggregation of GARCH Models
- 8.2.3 Estimates of GARCH(1,1) for Various Frequencies
- 8.3 Modeling Heterogeneous Volatilities
- 8.3.1 The HARCH Model
- 8.3.2 HARCH and Market Components
- 8.3.3 Generalization of the Process Equation
- 8.3.4 EMA-HARCH Model
- 8.3.5 Estimating HARCH and EMA-Harch Models
- 8.3.6 HARCH in Interest Rate Modeling
- 8.4 Forecasting Short-Term Volatility
- 8.4.1 A Framework to Measure the Forecasting Performance
- 8.4.2 Performance of ARCH-Type Models
- 9. Forecasting Risk and Return
- 9.1 Introduction to Forecasting
- 9.2 Forecasting Volatility for Value-at-Risk
- 9.2.1 Three Simple Volatility Forecasting Models
- 9.2.2 Choosing the Best Volatility Forecasting Model
- 9.3 Forecasting Returns over Multiple Time Horizons
- 9.3.1 Intrinsic Time
- 9.3.2 Model Structure
- 9.3.3 A Linear Combination of Nonlinear Indicators
- 9.3.4 Moving Averages, Momenta, and Indicators
- 9.3.5 Continuous Coefficient Update
- 9.4 Measuring Forecast Quality
- 9.4.1 Appropriate Measures of Forecast Accuracy
- 9.4.2 Empirical Results for the Multi-Horizon Model
- 9.4.3 Forecast Effectiveness in Intraday Horizons
- 10. Correlation and Multivariate Risk
- 10.1 Introduction
- 10.2 Estimating the Dependence of Financial Time Series
- 10.3 Covolatility Weighting
- 10.3.1 Formulation of an Adjusted Correlation Measure
- 10.3.2 Monte Carlo and Empirical Tests
- 10.4 Stability of Return Correlations
- 10.4.1 Correlation Variations over Time
- 10.4.2 The Exponential Memory of Return Correlations
- 10.5 Correlation Behavior at High Data Frequencies
- 10.6 Conclusions
- 11. Trading Models
- 11.1 Introduction
- 11.2 Real-Time Trading Strategies
- 11.2.1 The Trading Model and Its Data-Processing Environment
- 11.2.2 Simulated Trader
- 11.3 Risk Sensitive Performance Measures
- 11.3.1 Xeff: A Symmetric Effective Returns
Measure
- 11.3.2 Reff: An Asymmetric Effective Returns
Measure
- 11.4 Trading Model Algorithms
- 11.4.1 An Example of a Trading Model
- 11.4.2 Model Design with Genetic Programming
- 11.5 Optimization and Testing Procedures
- 11.5.1 Robust Optimization with Genetic Algorithms
- 11.5.2 Testing Procedures
- 11.6 Statistical Study of a Trading Model
- 11.6.1 Heterogeneous Real-Time Trading Strategies
- 11.6.2 Price-Generation Processes and Trading Models
- 11.7 Trading Model Portfolios
- 11.8 Currency Risk Hedging
- 11.8.1 The Hedging Ratio and the "Neutral Point"
- 11.8.2 Risk/Return of an Overlay with Static and Dynamic Positions
- 11.8.3 Dynamic Hedging with Exposure Constraints
- 11.8.4 Concluding Remarks
- 12. Toward a Theory of Heterogeneous Markets
- 12.1 Definition of Efficient Markets
- 12.2 Dynamic Markets and Relativistic Effects
- 12.3 Impact of the New Technology
- 12.4 Zero-Sum Game or Perpetuum Mobile?
- 12.5 Discussion of the Conventional Definition
- 12.6 An Improved Definition of "Efficien Markets"
- Bibliography
- Index
2001, 383 pp., ISBN 0-12-279671-3, на английском языке